polymerize on standing to give, at first, more viscous liquids and then white solids.
We have previously found that molecular weight determination on samples of o-phenvlenedioxydiphenylsilane purified in various ways gave evidence that the monomeric and dimeric species could be separated ${ }^{\text {a }}$, and corroboration for this has come from another laboratorys. Only dimeric values were obtained for the liquid o-phenylenedioxymethylphenylsilane, however.

Acknowledgement

This investigation was supported by Public Health Service Research Grant

Baber Laborntory, Corncll Entutrsity,
C. M. Sincos

J. J. Zuckerman

```
I J. I. Zuckermar. J. Chems Soc.. (1962) 5J3-
2 H. I. Emelél's iND J. J. ZeciermaN, J.Orgatiomeial. Chem., I (igGq) 32S.
H. ErDwas:N, {un. Chem., -4T (13SS) }356
```



```
H. J. Emelevs avo J. J Zuckermav, unpublished resules.
5 A. J. Neals ano B. B. Mfllwakd. private communication. Ig63.
Received September Ifth, IG65
```


PRELIMINARY NOTES

The $n \rightarrow \sigma^{*}$ transition of x-metal ketones

In a recent publication Harnish and West ${ }^{1}$ proposed that the ultraviolet absorption spectra of x-sily itetones could be explained on the basis of $d x-p=x$ bonding involving the d orbitals of silicon and the x and τ^{*} orbitals of the carbonvl group. West has since generalized these proposals to predict the effect of metalloid substitution on the electronic transition of wo- and ihree-atom chromophores.

Yates, Agolini and Csizmadia3.4 by LCAO calculations, have been able to predict the magnitude of the shifts produced in ketones of the type $\mathrm{R}_{3} \mathrm{SiCOR}$, $\mathrm{R}_{3} \mathrm{GeCOR}$, and $\mathrm{R}_{3} \operatorname{SiCOSiR}{ }_{3}$ without invoking d orbital participation.

In addition they have found that in ketones of the type $\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{MCOC}_{6} \mathrm{H}_{5}$ that the base strength of the ketone decreased in the order $\mathrm{Si}>\mathrm{Ge}>\mathrm{C}$, indicating that in the ground state the predominant effect is inductive release of electrons to the oxygen atom, rather than electron withdrawal through $d \tau-p \pi$ bonding ${ }^{3,4}$.

Since it is generally agreed ${ }^{5}$ that the amount of $d x-p z$ bonding should be successively less in gemnanium and tin compounds than in silicon compounds, it seemed of value to prepare a series of ketones $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{MCOCH}_{3}, \mathrm{M}=\mathrm{C}$, Si , Ge and Sn , to gain
additional information on the cause of the observed shift of the position of the $n \rightarrow \boldsymbol{\pi}^{*}$ transition.

Acetyltriphenylgermane was prepared by the addition of triphenylgermyllithium to acetyl chloride at -70° and by the oxidation of 1 -triphenylgermylethanol.

Acetyltriphenyltin, I, was prepared by the addition of triphenyltinlithium to an excess of acetyl chloride in tetrahydrofuran at - 70°. The reaction mixture was allowed to warm to room temperature and the volatile components removed under vacuum. A solution of I was obtained by extracting there sidue with pentane. The pentane was removed to obtain I as a waxy solid. All attempts to purify I led to decomposition.

The identity of I was confirmed on the basis of the following observations: exprosure of a solution of I to air for 5 to 10 minutes led to complete conversion to triphenyltin acetate which was identified by comparison with an authentic sample. Similar reactions have previously been reported for x-silylketones by Brook and Pierce ${ }^{6}$. Lithium aluminum hydride reduction of I gave I-triphenyitinethanol, melting point $93-95^{\circ}$, (Anal. : Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{OSn}: \mathrm{C}, 60.8 ; \mathrm{H}, 5.10$; found: $\mathrm{C}, 60.5$; $\mathrm{H}, 5.0 \mathrm{~S}$) identified by- its infrared and nuclear magnetic resonance spectra. Finally, the ultraviolet absorption spectrum of the $n \rightarrow x^{*}$ transition was a multiplet, characterisitic of the x-metal ketones.

TABIEI
carbonyl grotp mienaption in $\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{MCOCH}_{3}$

Comporasd	$i_{\text {mar. }} \mathrm{m} \mu^{\text {a }}$	$v_{m a z^{3}, c a z^{-1}}$
$\left.\mathrm{CC}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{CCOCH}_{3}$	302	$1-10$
$\ddot{C}_{6} \mathrm{H}_{3} \mathrm{SiCOCH}_{3}$	303. 376.392	1694
$\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{SCCOCH}_{3}$	$35=365,3^{50}$	iciog
$\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{SnCOCH}_{3}$	303 (s).3-5.391	16\%

* In n-ineptanc: ${ }^{3}$ in carbon tetrachlozide: is shoulder.

The positions of the ultraviolet and infrared absorption maxima for the carbonyl group for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{ICOCH}_{3}$ are given in Table I .

These results suggest that the primary cause of the shift in the position of the $n \rightarrow, \tau^{*}$ tranisition is the inductive effect of the metal rather than $d a-p z$ bonding.

Preliminary results on the addition of triphenyltinlithium to a variety of other acid chlorides indicate that the reaction is general. Thus, reaction with methyl chloroformate gives a product with $r_{\text {max }} 162 \mathrm{Cm}^{-1}$. Further research to characterize this product and others is currently underway:

This research was supported by the National Research Council of Canada.
Depariment of Chesmisiry, University of Alberia, \quad G. J. D. Peddef
Edynonton, Alberta (Canada)

[^0]4 F. Agolini, Ph.D. Thesis, University of Toronto, 1965.
5 E. Rijsens and G. J. M. Vis der Kerk, Organogermanium Chemistry. Institute for Organic Chemistry T.N.O. Ürecht, 1964, p. 6n.
6 A. G. Broon and J- B. Fterce, fqgth Lafional Meetimg oj the -t mevican Chemical Society, Detroit. Hich. April 1gö4; Abstracts, p. $1 \geq$ P.

Received September 2oth, in revised form January 2oth, 1966
f. Organosechal. Cfem:. 5 (1906! f fo

Reactions of pentafiuorophenyllithium and cyclopentadienyliron carbonyl cations

The reaction: of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Fe} \mathrm{CO}_{6}-\mathrm{BPh}_{4}^{-}$and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{P}_{-}^{-} \mathrm{Cl}^{-}$with sodium borohturide' provide a contrat which illustrates an effect of substitution of triphenciphosiphine for carbon monoxide in a metal complex. The former reaction
 yelds a cyclopentadiene derivative, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{CO}_{2}{ }_{2} / \mathrm{C}_{6} \mathrm{H}_{5}{ }_{3} \mathrm{P}^{-}$.

We have aloo observed a contrast in reactionsof these two crolopentadiendiron carbrogl cations with pentafluorophenyhithium. The reaction of this hithium reagent ferepared from buthithium and bromopentafluorobenzene in dierhel etherat - -s: and a slumy of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Fe} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}{ }_{3} \mathrm{P}^{-} \mathrm{I}$ in tetahydrofuran was run at o° for $\geq \mathrm{h}$. - iter removing solvent the residue was chromatoseraphed on an alumina columa, with a single yellow band duting with benzere. This band was collected and eraprated siving a bellow solid. Crysallization from a benzenterctane mixture gave the yellow

 $3.50 ;$ F. 55-: P. 5.00 ; mil. wt. ©ro:

The infared pectium of this compund in carbon tetrathoride contaned bands caaracteristic of the gentafuorophensl group and the riphenglphosphine higand, and contaned als; iwo strong carbonvi stretching frequencies at 1 goto and $1925 \mathrm{~cm}^{-1}$
 The preseace of a singie isomer, the exn- fom, was clear from this spectrum which showed a C-H stretching freduency at $2 g_{\text {fo }} \mathrm{cm}^{-1}$ characteristic of the endo- C-H but which lacked an absorption at $\sim 2-50 \mathrm{~cm}^{-1}$ which would be expected* for an ex.-C-H. The proton NMR spectrum of this complex contained broad peaks at 2.70τ (multiplet, $503 \mathrm{r}, 5.35 x$ and 7.40τ of relative intensities $15: 2: 5: 2$. These resonances are asigaable to the protons $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{H}_{4}, \mathrm{H}_{\text {endo }}, \mathrm{H}_{\mathrm{E}}$ respectively (Figr $\mathrm{t}_{\text {; }}$.

When a diethyl ether solution of pentatiuorophenyllithium was reacted with a \therefore turis of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Fe}_{\mathrm{C}}\left(\mathrm{CO}_{3} \div \mathrm{PF}_{5}-\right.$ in tetrahydrofuran at o° for 2 h a reaction was again

[^1]
[^0]: I D. F. Haraish and R. West, Inorg. Chem., $2(19003$) rosz.
 2 R. West, J. Organomefal. Chem., 3 (190́s) 3 rq.
 3 K. Yates, F. Agolini and 1. G. Csizmadia, paper presented at the Sth Eirapean Congress on . Molicular Spectroscopy, Copeniagen, Denmark, fugitst, 1965.

[^1]: - These appears some dowbe in the literature regarding the geonecte of substitutede cychopentadiene compiexes of metals. The most detinstive work is found in a crysial structure determimatontz of exo-s $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}_{3} \mathrm{H}_{-} \mathrm{CoC}, \mathrm{H}_{5}$. The infrared band at 2952 em ${ }^{-1}$ in this compound could fogicaby be assigned to the endo-CH- contrary to the assignment originally made for this compoundth. and conimry to most other assignments made in other substituted cyclopentadienc complexes.

